
Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

1 
 

 

HOTEL TECHNOLOGY – NEXT GENERATION 

Property Web Services 

Framework 2.0 Specification 
Version 1.0.8 

Release 2 

FINAL (Synchronous) 
DRAFT (Asynchonous) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

2 
 

Copyright 2007, Hotel Technology Next Generation 
  
All rights reserved. 
  
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any 
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the 
prior permission of the copyright owner. 
  
For any software code contained within this specification, permission is hereby granted, free-of-
charge, to any person obtaining a copy of this specification (the "Software"), to deal in the 
Software without restriction, including without limitation the rights to use, copy, modify, merge, 
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom 
the Software is furnished to do so, subject to the above copyright notice and this permission notice 
being included in all copies or substantial portions of the Software. 
  
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS 
FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR 
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN 
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION 
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
  
Permission is granted for implementers to use the names, labels, etc.  
contained within the specification. The intent of publication of the specification is to encourage 
implementations of the specification. 
  
This specification has not been verified for avoidance of possible third-party proprietary rights. In 
implementing this specification, usual procedures to ensure the respect of possible third-party 
intellectual property rights should be followed. 
  
The names Hotel Technology Next Generation and HTNG, and logos depicting these names, are 
trademarks of Hotel Technology Next Generation.  Permission is granted for implementers to use 
the aforementioned names in technical documentation for the purpose of acknowledging the 
copyright and including the notice required above.  All other use of the aforementioned names and 
logos requires the permission of Hotel Technology Next Generation, either in written form or as 
explicitly permitted for the organizations members through the current terms and conditions of 
membership. 



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

3 
 

Table of Contents 

Table of Contents ....................................................................................................................... 3 
PREFACE .................................................................................................................................. 4 
Framework 2.0 ........................................................................................................................... 4 
Overview .................................................................................................................................... 5 
WS Addressing .......................................................................................................................... 5 
HTTP Communication Patterns ................................................................................................. 5 

The Synchronous Communication Process ........................................................................... 6 
SYNC1 ............................................................................................................................... 6 
SYNC2 ............................................................................................................................... 7 

Overall Fault Handling .......................................................................................................... 8 
WSDL Construction and Change Management ..................................................................... 8 
Security (if in use) .................................................................................................................. 8 

Security XML Example ..................................................................................................... 9 
Routing ................................................................................................................................... 9 

Appendix 1 - The Asynchronous Communication Process ....................................................... 9 
ASYNC1 .......................................................................................................................... 10 
ASYNC2 .......................................................................................................................... 10 
ASYNC3 .......................................................................................................................... 11 
ASYNC4 .......................................................................................................................... 11 

Asynchronous Fault handling .............................................................................................. 12 
Asynchronous WSDL Structure .......................................................................................... 12 

Asynchronous WSDL Example ....................................................................................... 12 
Simple HTNG Framework 2.0 Asynchronous Sample........................................................ 13 

Appendix 2 - SOAP Fault handling ......................................................................................... 14 
Declarative Approach .......................................................................................................... 14 

Appendix 3 - SOAP Exception Handling ................................................................................ 16 
Appendix 4 - Math(A+B) sample project ................................................................................ 17 
Appendix 5 - Payment Posting Example ................................................................................. 18 
Appendix 6 - Additional Examples .......................................................................................... 18 
 



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

4 
 

PREFACE 

Hotel Technology Next Generation (“HTNG”) is a nonprofit organization with global scope, formed 
in 2002 to facilitate the development of next-generation, customer-centric technologies to better 
meet the needs of the global hotel community. HTNG’s mission is to provide leadership that will 
facilitate the creation of one (or more) industry solution set(s) for the lodging industry that: 

• Are modeled around the customer and allow for a rich definition and distribution of hotel 
products, beyond simply sleeping rooms; 

• Comprise best-of-breed software components from existing vendors, and enable vendors 
to collaboratively produce world-class software products encompassing all major areas of 
technology spending: hotel operations, telecommunications, in-room entertainment, 
customer information systems, and electronic distribution; 

• Properly exploit and leverage a base system architecture that provides integration and 
inter operability through messaging; and that provides security, redundancy, and high 
availability; 

• Target the needs of hotel companies up to several hundred properties, that are too small 
to solve the issues themselves; 

• Will reduce technology management cost and complexity while improving reliability and 
scalability; and 

• Can be deployed globally, managed remotely, and outsourced to service providers where 
needed. 

In June 2005, HTNG announced the first-ever “Branding and Certification Program” for hotel 
technology. This program will enable vendors to certify their products against open HTNG 
specifications, and to use the "HTNG Certified" logo in their advertising and collateral materials. It 
will enable hotels to determine which vendors have completed certification of their products 
against which specific capabilities, and the environments in which performance is certified. HTNG’s 
vision is to achieve a flexible technical environment that will allow multiple vendors’ systems to 
interoperate and that will facilitate vendor alliances and the consolidation of applications, in order 
to provide hotels with easily managed, continually evolving, cost-effective solutions to meet their 
complete technology needs on a global basis.  

Framework 2.0  

A key group of technologists from across the industry were formed into a workgroup to revise the 
methodology for system interconnection via Web Services. 

This group included the following people representing the following companies:- 

Name Company Represented Email 

Kristofer Agren OpenCourse Solutions kagren@opencourse.com 

Sophie Grigg PAR Springer-Miller Systems sophie_grigg@springermiller.com 

Alex Lobakov PAR Springer-Miller Systems alex_lobakov@springermiller.com 

Alex Shore Newmarket International AShore@newmarketinc.com 

Tom Gresham MICROS Systems, Inc. tgresham@micros.com 

Andreas Hagedorn Trust International ahagedorn@trustinternational.com 

Brad More Theodatus brad.more@theodatus.com 

Mark Pullen InfoGenesis mpullen@infogenesis.com 

Doug Rice HTNG douglas.rice@htng.org 

The group met together during 2006 & 2007 to prepare this specification material. During Hitec 
(June 2006) various vendors were able to demonstrate the use of the new Framework 2.0 



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

5 
 

methodology to interface systems for various HTNG initiatives. In addition a number of workgroups 
have either used this Framework as their connectivity mechanism or plan to do so.  

This specification describes the Framework 2.0 methodology it remains a working document until a 
number of vendors are live with Framework 2.0.  

Overview 

This specification outlines a set of existing open standards, patterns and practices that have 
gained significant acceptance throughout the IT industry that must be supported by an 
implementer to claim HTNG Framework 2.0 compliance. The framework prescribes a service 
oriented architecture implemented using Web Services.  

An HTNG Framework 2.0 compliant Web Service MUST adhere to the following:  

1. Support both SOAP 1.1 and SOAP 1.2 
2. Be expressed fully in WSDL and XML Schema 
3. Support WS-Addressing (Web Services Addressing 1.0 - Core W3C Working Draft: 2004-

12-08 - http://www.w3.org/TR/2004/WD-ws-addr-core-20041208) 
4. Be accessible using synchronous and/or asynchronous HTTP as described below 
5. There is an assumption that you are processing XML messages correctly utilizing best 

practices and known conventions 

The following is RECOMMENDED  

1. Usage of WS-Security to authenticate messages and secure message content. Only the 
WS-Security 1.0 specification is supported within the context of this specification. 

2. Usage of asynchronous HTTP as described below 
3. Usage of SOAP faults as described below 
4. Usage of the XML Schema and WSDL construction best practices as described below 

WS Addressing  

The group reviewed many of the specifications in place and in use across many industries. It was 
felt that the use of existing standards was the optimal way to create the most effective 
communication standard. This documentation uses the standards described in the Web Services 
section of the http://www.w3.org  

The group decided that guidelines defined within Web Services Addressing were appropriate for 
Framework 2.0. The W3C Working Draft of December 2004 (2004-12-08 - 
http://www.w3.org/TR/2004/WD-ws-addr-core-20041208) was chosen as the WS-Addressing 
version to use because it provided the a platform that was well supported by many of the common 
software platforms the members were using to develop their software.  

Synchronous and Asynchronous communications are in use actively by many HTNG members 
using the existing HTNG header. Framework 2.0 provides support for both communication 
patterns. In addition we have provided guidelines that should make the communication process 
more robust and standardized.  

HTTP Communication Patterns 

The synchronous pattern, whilst straightforward, is included here for reference and to aid in 
communicating a best practice approach. As different web service frameworks handle 
asynchronous communication differently, the approach described in the 'Async pattern' section is 
the recommended one and while an implementer may choose to support other async patterns, at 
the very least this async pattern must be supported in future in order to claim HTNG compliance. 
The full details of Asynchronous communication and the associated fault handling should be 
considered in draft form within this specification and are described in Appendix 1 of this document. 
Synchronous communications are defined as follows:-  



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

6 
 

The Synchronous Communication Process 

Synchronous communication is defined as a request/response over the same channel. The overall 
principals in this communication are defined as follows:-  

• Each message will supply a unique MessageID. Should the same message be transmitted 
with a different MessageID (many organizations utilize a GUID for this purpose), this will 
be treated as a separate message by the recipient. 

• If reply to element contains the anonymous URI then the response will be provided on the 
same channel, by definition this becomes a Synchronous transaction. Please see 
http://www.w3.org/TR/2004/WD-ws-addr-core-20041208 (Section 3 – Message 
Addressing Properties) 

Diagrammatically this can be represented via the following sequence diagram. 

 

SYNC1 

The caller sends the request message, and indicates that the response should be sent on the same 
connection by supplying the WS-Addressing “anonymous” URI in the wsa:ReplyTo element. Note 
that if the anonymous URI is used and there is both a wsa:ReplyTo and wsa:FaultTo element, both 
wsa:ReplyTo and wsa:FaultTo elements MUST use the anonymous URI, i.e. it is not possible to use 
the anonymous URI for wsa:ReplyTo but not wsa:FaultTo, or vice versa.  

Sync - Sample message with HTTP header 

POST /MyService.asmx HTTP/1.1 
Content-Type: text/xml; charset="utf-8" 
Content-Length: nnnn 
Connection: close 



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

7 
 

SOAPAction: http://xyz/MyService/SayHello 
 
(01) <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
 
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing";> 
(02)     <soap:Header> 
(04)         <wsa:MessageID>uuid:214A50B2-E62E-4f8b-BD97-
62ABE31E15C2</wsa:MessageID> 
(05)         <wsa:ReplyTo> 
(06)             
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymou
s</wsa:Address> 
(07)         </wsa:ReplyTo> 
(08)         <wsa:To>http://xyz/MyService</wsa:To> 
(09)         <wsa:Action>http://xyz/MyService/SayHello</wsa:Action> 
(10)     </soap:Header> 
(11)     <soap:Body> 
(12)         <m:SayHello xmlns:m="http://xyz/MyService"> 
(13)             <m:MyName>John Doe</m:MyName> 
(14)         </m:SayHello> 
(15)     </soap:Body> 
(16) </soap:Envelope> 

SYNC2 

The Web Service sends back the response on the same connection that the request came in on.  

Sync - Sample message with HTTP response header  

HTTP/1.1 200 OK 
Date: Wed, 10 May 2006 11:30:07 GMT 
Content-Length: nnnn 
Content-Type: text/xml; charset="utf-8" 
 
(01) <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
 
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"> 
(02)     <soap:Header> 
(03)         <wsa:MessageID>uuid:5ED743DD-C051-43e8-9287-
D349DEAD38FB</wsa:MessageID> 
(04)         <wsa:RelatesTo>uuid:214A50B2-E62E-4f8b-BD97-
62ABE31E15C2</wsa:RelatesTo> 
(05)         <wsa:To>http://abc:1234/MyClient </wsa:To> 
(06)         <wsa:Action>http://xyz/MyService/SayHelloResponse</wsa:Action> 
(07)     </soap:Header> 
(08)     <soap:Body> 
(09)         <m:SayHelloResponse xmlns:m="http://xyz/MyService"> 
(10)             <m:Greeting>Hello John Doe</m:Greeting> 
(11)         </m:SayHelloResponse> 
(12)     </soap:Body> 
(13) </soap:Envelope> 

Sync - Sample fault with HTTP response header 

HTTP/1.1 200 OK 
Date: Wed, 10 May 2006 11:30:07 GMT 
Content-Length: nnnn 
Content-Type: text/xml; charset="utf-8" 
 



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

8 
 

(01) <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
 
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"> 
(02)     <soap:Header> 
(03)         <wsa:MessageID>uuid:AF6F10EE-B2A8-4080-BEA0-
0A5F03100C60</wsa:MessageID> 
(04)         <wsa:RelatesTo>uuid:214A50B2-E62E-4f8b-BD97-
62ABE31E15C2</wsa:RelatesTo> 
(05)         <wsa:To>http://abc:1234/MyClient</wsa:To> 
(06)         
<wsa:Action>http://www.w3.org/2005/08/addressing/fault</wsa:Action> 
(07)     </soap:Header> 
(08)     <soap:Body> 
(09)         <soap:Fault xmlns:m="http://xyz/MyService"> 
(10)             <faultcode>m:MyNameNotSet </faultcode> 
(11)             <faultstring>No name was specified, unable to say 
hello</faultstring> 
(12)             <detail> 
(13)                 <m:MyNameNotSet> 
(14)                     <m:SomeElement>Some additional 
information</m:SomeElement> 
(15)                 </m:MyNameNotSet> 
(16)             </detail> 
(17)         </soap:Fault> 
(18)     </soap:Body> 
(19) </soap:Envelope> 

Overall Fault Handling  

SOAP Faults will be provided as a mechanism for handling error conditions. We highly recommend 
that faults are declared in the WSDL. These may include faults that are business dependent. For 
example, methods that create reservations may want to return failures for defined failure reasons 
like "missing arrival or departure date".  
Since faults relating to transportation are not (typically) known ahead of time, these would not 
normally be declared in the WSDL.  

A response that contains a fault should be sent to the same address as a reply would, unless a 
specific wsa:FaultTo element was specified in the header of the request message  

Documentation describing an example of SOAP fault handling is attached in Appendix 2.  

WSDL Construction and Change Management 

We strongly recommended the use of HTTP for transporting messages. This specification primarily 
focuses on Web Services using HTTP as the transport medium.  

Please review 
http://www.opengroup.org/htng/propws.pma/protected/upreviews/30/1948/Release_and_Change
_Management_of_HTNG_Specifications_Involving_Web_Services.htm.base regarding the 
appropriate practices regarding release and change management of HTNG specifications involving 
Web Services.  

Security (if in use) 

We recommend the use of WS Security as part of the normal development process. Below is a 
sample Synchronous message that uses the UsernameToken element as per WS-Security 1.0. WS-
Addressing headers are also included. Note that the message is only using WS-Security for 
authentication, therefore no in-message signature or encryption is performed. The password is 
provided in clear text, and implies that the communication is secured at the transport level.  



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

9 
 

Security XML Example 

(01) <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd" 
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"> 
(02)     <soap:Header> 
(03)         
<wsa:Action>http://htng.org/PWSWG/2006/05/BanquetEventOrder#BeoRequest</wsa
:Action> 
(04)         <wsa:MessageID>urn:uuid:29f43cdc-a621-4e2c-80af-
3653545d5502</wsa:MessageID> 
(05)         <wsa:ReplyTo> 
(06)             
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymou
s</wsa:Address> 
(07)         </wsa:ReplyTo> 
(08)         
<wsa:To>http://127.0.0.1/NIIS/BeoService/BeoService.asmx</wsa:To> 
(09)         <wsse:Security soap:mustUnderstand="1"> 
(10)             <wsu:Timestamp wsu:Id="Timestamp-9f540437-93c5-4b9d-9d57-
afad42eb007b"> 
(11)                 <wsu:Created>2006-10-30T16:07:46Z</wsu:Created> 
(12)                 <wsu:Expires>2006-10-30T16:12:46Z</wsu:Expires> 
(13)             </wsu:Timestamp> 
(14)             <wsse:UsernameToken 
  xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd" 
  wsu:Id="SecurityToken-9d1092c8-afdd-421c-9d78-
044f6c25d777"> 
(15)                 <wsse:Username>TestUserName</wsse:Username> 
(16)                 <wsse:Password Type="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#PasswordText">TestPasswordValue</wsse:Password> 
(17)                 <wsse:Nonce>+c1BfJJI3Slsm6J4l9Wk2w==</wsse:Nonce> 
(18)                 <wsu:Created>2006-10-30T16:07:46Z</wsu:Created> 
(19)             </wsse:UsernameToken> 
(20)         </wsse:Security> 
(21)     </soap:Header> 
(22)     <soap:Body> 
(23)     </soap:Body> 
(24) </soap:Envelope> 

Routing 

Limited discussion has taken place to date on routing. The discussions to date have determined:-  

1. If routing (or any type of intermediary forwarding mechanism) is used, a next-hop 
approach is highly recommended, i.e. every entity in the chain know only of the next hop 
in the chain.  

2. Every end point should be treated in the same way, i.e there is no discernible difference 
between an intermediary (e.g, a router) and the logical final recipient.  

Appendix 1 - The Asynchronous Communication Process 



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

10 
 

Note: This appendix, Asychronous Communications Process, is considered to be in draft 
status and is subject to change in the next release. 

Asynchronous behavior is accomplished by implementing three “normal” web service methods, one 
on the service side that gets called by the consumer to start the asynchronous process (the 
method should have the _SubmitRequest suffix), and two methods that are implemented by the 
consumer to receive the result (suffixed _SubmitResult) or a fault (_SubmitFault).  

The response/reply message in each message exchange (the _SubmitRequest message exchange 
and _SubmitResult/_SubmitFault message exchange) are treated like normal and are correlated 
using WS-Addressing.  

The asynchronous response or fault is correlated using a custom HTNG SOAP header that the 
consumer creates. The correlation id is considered an opaque string and must be unique (the use 
of a UUID is recommended but not required). The address to where the asynchronous reply or 
fault is sent to is also controlled using custom HTNG SOAP headers.  

For an asynchronous operation that completes without a fault, the process is as follows, assuming 
a fictitious method called “XYZ” part of a fictitious specification that has the namespace 
http://htng.org/abcspec/  

ASYNC1 

The consumer generates a unique string that will be used for correlation, sets it in the SOAP 
header, and creates the _SubmitRequest message. In this sample, a UUID was used for 
CorrelationID :  
(01) <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
 
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 
  xmlns:htng="urn:tobedetermined"> 
(02)     <soap:Header> 
(03)         <wsa:MessageID>uuid:214A50B2-E62E-4f8b-BD97-
62ABE31E15C2</wsa:MessageID> 
(04)         <wsa:ReplyTo> 
(05)             
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymou
s</wsa:Address> 
(06)         </wsa:ReplyTo> 
(07)         <wsa:To>http://htng.org/abcspec</wsa:To> 
(08)         
<wsa:Action>http://htng.org/abcspec/XYZ_SubmitRequest</wsa:Action> 
(09)         <htng:CorrelationID>uuid:2D11751F-916F-4c1f-B1FD-
9D6D051AC90A</htng:CorrelationID> 
(10)         <htng:ReplyTo> 
(11)             <wsa:Address>http://abc:1234/MyClientAsync</wsa:Address> 
(12)         </htng:ReplyTo> 
(13)         <htng:FaultTo> 
(14)             <wsa:Address>http://abc:1234/MyClientAsync</wsa:Address> 
(15)         </htng:FaultTo> 
(16)     </soap:Header> 
(17)     <soap:Body> 
(18)         <m:XYZ_SubmitRequest xmlns:m="http http://htng.org/abcspec"> 
(19)             ... The request ... 
(20)         </m:XYZ_SubmitRequest> 
(21)     </soap:Body> 
(22) </soap:Envelope> 

ASYNC2 



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

11 
 

The provider receives the message, initiates the asynchronous process and sends back an “empty” 
SOAP message  
(01) <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
 
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" > 
(02)     <soap:Header> 
(03)         <wsa:MessageID>uuid:9971BF72-F42D-49ee-99DB-
BEC28B6EDAF7</wsa:MessageID> 
(04)         <wsa:RelatesTo>uuid:214A50B2-E62E-4f8b-BD97-
62ABE31E15C2</wsa:RelatesTo> 
(05)         
<wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</ws
a:To> 
(06)         
<wsa:Action>http://htng.org/abcspec/XYZ_SubmitRequestResponse</wsa:Action> 
(07)     </soap:Header> 
(08)     <soap:Body/> 
(09) </soap:Envelope> 

ASYNC3 

The provider completes the asynchronous process, and invokes the _SubmitResult method on the 
consumer (the address was specified by the htng:ReplyTo element in the original _SubmitRequest 
method).  
(01) <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
 
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" 
  xmlns:htng="urn:tobedetermined" > 
(02)     <soap:Header> 
(03)         <wsa:MessageID>uuid:C15EE2B2-B41C-44c4-901E-
1032159CCC6A</wsa:MessageID> 
(04)         <wsa:ReplyTo> 
(05)             
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymou
s</wsa:Address> 
(06)         </wsa:ReplyTo> 
(07)         <wsa:To>http://htng.org/abcspec</wsa:To> 
(08)         <wsa:Action> 
http://htng.org/abcspec/XYZ_SubmitResult</wsa:Action> 
(09)         <htng:RelatesToCorrelationID>uuid:2D11751F-916F-4c1f-B1FD-
9D6D051AC90A</htng:RelatesToCorrelationID> 
(10)     </soap:Header> 
(11)     <soap:Body> 
(12)         <m:XYZ_SubmitResult xmlns:m="http://htng.org/abcspec"> 
(13)             ... The result ... 
(14)         </m:XYZ_SubmitResult> 
(15)     </soap:Body> 
(16) </soap:Envelope> 

ASYNC4 

The consumer sends back an “empty” SOAP response message  
(01) <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
 
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"> 
(02)     <soap:Header> 
(03)         <wsa:MessageID>uuid:6F400F52-8912-4dab-BEEB-
FEDEC356979F</wsa:MessageID> 
(04)         <wsa:RelatesTo>uuid:C15EE2B2-B41C-44c4-901E-
1032159CCC6A</wsa:RelatesTo> 



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

12 
 

(05)         
<wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</ws
a:To> 
(06)         
<wsa:Action>http://xyz/MyService/XYZ_SubmitResultResponse</wsa:Action> 
(07)     </soap:Header> 
(08)     <soap:Body/> 
(09) </soap:Envelope> 

Diagrammatically this can be represented via the following sequence diagram: 

 

Asynchronous Fault handling 

There are four places where a fault can be reported:  

1. In the response to _SubmitRequest method, i.e. the provider throws a fault back to the 
consumer. 
This fault will be sent back instead of the “empty” message.  
If this happens, the consumer can assume that NO asynchronous process was started and 
there will thus be no _SubmitResult or _SubmitFault call.  

2. In the _SubmitFault method, i.e. the provider signals the consumer that the asynchronous 
operation completed as the result of a fault.  

3. In the response to the _SubmitResult method, i.e. the consumer returns a fault back to 
the provider as a response to the _SubmitResult method.  

4. In the response to the _SubmitFault method, i.e. the consumer returns a fault back to the 
provider as a response to the _SubmitFault method.  

Asynchronous WSDL Structure 

Create two port types, one that will hold the methods implemented by the providers and one 
implemented by the consumer to receive completion and error callbacks. For each _SubmitRequest 
method in the provider, create two callback methods, _SubmitResult and _SubmitFault, on the 
consumer's side.  

Asynchronous WSDL Example 



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

13 
 

(01) <!--"Normal" port type that the provider implements. 
 Contains both synchronous methods and the initiating method of 
asynchronous methods--> 
(02) <portType name="ReservationProviderPortType"> 
(03)     <!--This is the normal synchronous version--> 
(04)     <operation name="CreateReservation"> 
(05)         <input/> 
(06)         <output/> 
(07)         <fault/> 
(08)     </operation> 
(09)     <!--This is the asynchronous version--> 
(10)     <operation name="CreateReservation_SubmitRequest"> 
(11)         <input 
message="tns:CreateReservation_SubmitRequestInputMessage"/> 
(12)         <output message="tns:EmptyMessage"/> 
(13)     </operation> 
(14) </portType> 
(15) <!--"Callback" port type that the caller implements to be able to 
receive completion 
 callbacks (successes and failures) on asynchronous methods--> 
(16) <portType name="ReservationAsyncCompletionPortType"> 
(17)     <operation name="CreateReservation_SubmitResult"> 
(18)         <input 
message="tns:CreateReservation_SubmitResultInputMessage"/> 
(19)         <output message="tns:EmptyMessage"/> 
(20)     </operation> 
(21)     <operation name="CreateReservation_SubmitFault"> 
(22)         <input 
message="tns:CreateReservation_SubmitFaultInputMessage"/> 
(23)         <output message="tns:EmptyMessage"/> 
(24)     </operation> 
(25) </portType> 

Simple HTNG Framework 2.0 Asynchronous Sample 

A sample application is contained in the file HTNG_Framework_2.0_Simple_Async_Sample.zip in 
the HTNG_Framework_2.0_Samples.zip archive which can be downloaded from the same location 
as this specification. 

The sample illustrates an implementation of the HTNG Framework 2.0 asynchronous pattern in 
WSE 3.0. In this sample, the notion of a “provider” and a “consumer” is used. The provider 
represents the “service” that is providing some business functionality, in this particular sample the 
business functionality consists of a dummy method called “CreateReservation”. The consumer 
represents the client application that is calling the provider to create a reservation. 

The asynchronous pattern in the HTNG Framework 2.0 specifies an asynchronous operation as two 
separate message exchanges:  

1. The consumer makes a regular synchronous http Web Service call (where the reply is 
received on the same connection as the request was sent on) to initiate the asynchronous 
request. An empty reply is sent back to indicate successful receipt of the request. The 
provider will kick off the asynchronous process.  

2. The provider will make a regular synchronous http Web Service call (where the reply is 
received on the same connection as the request was sent on) to the consumer when the 
asynchronous process is completed to deliver the successful result or the unsuccessful 
fault of the asynchronous process. 

The web methods that the provider and the consumer implements are described in separate 
portTypes in the WSDL to clearly separate the difference in the two roles that the consumer and 
provider plays in the message exchange.  



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

14 
 

This sample would have been fairly straightforward if WSE3 had out-of-the-box provided a way to 
accept http requests to a non-ASP.NET hosted process (by simply adding an “http” URI to the WSE 
“SoapReceivers” in the same way that it is possible to add a “soap.tcp” SoapReceiver, for 
example). While this is supported in WCF/Indigo, WSE3 does not support it, so this sample also 
contains a small Class Library “HttpSysTransport” originally written by Aaron Skonnard (with some 
minor enhancements) to make this possible in WSE3.  

Appendix 2 - SOAP Fault handling 

It is recommended to use the standard SOAP fault model as described in the SOAP 1.1 and 1.2. 
This specification divides faults into two categories:  

1. Faults that are known ahead of time, which are typically business-specific faults and are 
specific to each Web Service. These faults are well defined in the WSDL and XML Schema 
of the Web Service. 

2. Faults that are not known ahead of time, which are typically implementation specific faults, 
e.g. communication faults, etc. 

Declarative Approach 

Faults that are known ahead of time and are business-specific should be declared in the WSDL to 
let the consumer of the Web Service know what types of business-related faults can be expected 
by calling a specific method. Each fault must also have a corresponding XML Schema element 
declared that uniquely describes the fault. Consider the following WSDL definition of a Web Service 
Method where there are two faults declared in the WSDL :  

(01) <operation name="CreateReservation"> 
(02)     <input message="tns:CreateReservationInputMessage"/> 
(03)     <output message="tns:CreateReservationOutputMessage"/> 
(04)     <fault name="NoAvailability" 
message="tns:NoAvailabilityFaultMessage"> 
(05)         <documentation>Thrown if there is no longer any 
availability;</documentation> 
(06)     </fault> 
(07)     <fault name="InvalidData" message="tns:InvalidDataFaultMessage"> 
(08)         <documentation>Thrown if one or more fields in the data are 
not filled in or did not validate. 
    The contents of the fault will contain more 
information</documentation> 
(09)     </fault> 
(10) </operation> 

The message definition for the NoAvailabiltyFaultMessage and InvalidDataFaultMessage look like 
this:  

(01) <message name="NoAvailabilityFaultMessage"> 
(02)     <part name="parameters" element="tns:NoAvailabilityFault"/> 
(03) </message> 
(04) <message name="InvalidDataFaultMessage"> 
(05)     <part name="parameters" element="tns:InvalidDataFault"/> 
(06) </message> 

And the XML Schema elements NoAvailabilityFault and InvalidDataFault look like this:  

(01) <xs:element name="NoAvailabilityFault"> 
(02)     <xs:complexType> 
(03)         <xs:sequence> 
(04)             <xs:element name="FirstAvailableDateAndTime" 
type="xs:dateTime"/> 



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

15 
 

(05)         </xs:sequence> 
(06)     </xs:complexType> 
(07) </xs:element> 
(08) <xs:element name="InvalidDataFault"> 
(09)     <xs:complexType> 
(10)         <xs:sequence> 
(11)             <xs:element name="Field" maxOccurs="unbounded"> 
(12)                 <xs:complexType> 
(13)                     <xs:sequence> 
(14)                         <xs:element name="Reason" type="xs:string"/> 
(15)                     </xs:sequence> 
(16)                     <xs:attribute name="name" type="xs:string" 
use="required"/> 
(17)                 </xs:complexType> 
(18)             </xs:element> 
(19)         </xs:sequence> 
(20)     </xs:complexType> 
(21) </xs:element> 

A SOAP 1.2 envelope containing the SOAP fault for InvalidData would look like this:  

(01) <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" 
   xmlns:t="http://new.webservice.namespace" 
   xmlns:xml="http://www.w3.org/XML/1998/namespace"> 
 … WS-Addressing, Security, etc headers omitted … 
(02)     <env:Body> 
(03)         <env:Fault> 
(04)             <env:Code> 
(05)                 <env:Value>env:Sender</env:Value> 
(06)                 <env:Subcode> 
(07)                     <env:Value>t:InvalidData</env:Value> 
(08)                 </env:Subcode> 
(09)             </env:Code> 
(10)             <env:Reason> 
(11)                 <env:Text xml:lang="en">Some of the fields were 
invalid</env:Text> 
(12)             </env:Reason> 
(13)             <env:Detail> 
(14)                 <t:InvalidDataFault> 
(15)                     <t:Field name="FirstName"> 
(16)                         <t:Reason>A first name must set</t:Reason> 
(17)                     </t:Field> 
(18)                     <t:Field name="DOB"> 
(19)                         <t:Reason>The date of birth cannot be in the 
future</t:Reason> 
(20)                     </t:Field> 
(21)                 </t:InvalidDataFault> 
(22)             </env:Detail> 
(23)         </env:Fault> 
(24)     </env:Body> 
(25) </env:Envelope> 

And the SOAP 1.2 envelope for the NoAvailability fault would look like this:  

(01) <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" 
   xmlns:t="http://new.webservice.namespace" 
   xmlns:xml="http://www.w3.org/XML/1998/namespace"> 
 … WS-Addressing, Security, etc headers omitted … 
(02)     <env:Body> 
(03)         <env:Fault> 



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

16 
 

(04)             <env:Code> 
(05)                 <env:Value>env:Sender</env:Value> 
(06)                 <env:Subcode> 
(07)                     <env:Value>t:NoAvailability</env:Value> 
(08)                 </env:Subcode> 
(09)             </env:Code> 
(10)             <env:Reason> 
(11)                 <env:Text xml:lang="en">There was no availability left 
to complete the reservation.</env:Text> 
(12)             </env:Reason> 
(13)             <env:Detail> 
(14)                 <t:NoAvailabilityFault> 
(15)                     <t:FirstAvailableDateAndTime>2006-12-
17T09:30:00Z</t:FirstAvailableDateAndTime> 
(16)                 </t:NoAvailabilityFault> 
(17)             </env:Detail> 
(18)         </env:Fault> 
(19)     </env:Body> 
(20) </env:Envelope> 

Please note that the example above represents the SOAP message carrying a fault as it might 
look in a synchronous session, or in an asynchronous session if the fault were to occur in the 
context of the call.  
Fault(s) that occur in the asynchronous process initiated by an asynchronous call would be 
submitted to the consumer via the _SubmitFault operation, therefore the SOAP message might 
look close to the following:  

(01) <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" 
   xmlns:t="http://new.webservice.namespace" 
   xmlns:xml="http://www.w3.org/XML/1998/namespace"> 
 … WS-Addressing, Security, RelatesToCorrelationID etc. headers 
omitted … 
(02)   <env:Body> 
(03)     <m:XYZ_SubmitFault> 
(04)       <env:Fault> 
(05)         <env:Code> 
(06)           <env:Value>env:Sender</env:Value> 
(07)             <env:Subcode> 
(08)               <env:Value>t:NoAvailability</env:Value> 
(09)             </env:Subcode> 
(10)           </env:Code> 
(11)         <env:Reason> 
(12)           <env:Text xml:lang="en">There was no availability left to 
complete the reservation.</env:Text> 
(13)         </env:Reason> 
(14)         <env:Detail> 
(15)           <t:NoAvailabilityFault> 
(16)             <t:FirstAvailableDateAndTime>2006-12-
17T09:30:00Z</t:FirstAvailableDateAndTime> 
(17)           </t:NoAvailabilityFault> 
(18)         </env:Detail> 
(19)       </env:Fault> 
(20)     </m:XYZ_SubmitFault> 
(21)   </env:Body> 
(22) </env:Envelope> 

Appendix 3 - SOAP Exception Handling 

A sample application has been created that provides an example of SOAP exception handling. 



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

17 
 

This example is contained in the file 
HTNG_Framework_2.0_SOAP_Fault_Handling_with_WSE_Sample.zip in the 
HTNG_Framework_2.0_Samples.zip archive which can be downloaded from the same location as 
this specification. 

The package contains examples and utilities for how to more easily use structured SOAP 
exceptions in the Microsoft WSE environment. Microsoft WSE does not fully implement structured 
SOAP exceptions (those exceptions that are identified by the contents of the <Detail> element in 
the SOAP fault element).  

The method described in the example is aimed to be similar to what is seen in other web service 
toolkits , e.g. AXIS, and Microsoft’s upcoming communication framework “WCF” (previously known 
as “Indigo”). Once WCF is released, porting structured SOAP exception handling using this method 
will be straightforward. In order to make this work, this method consists of two parts:  

1. A utility to generate the exception classes that correspond to a WSDL <fault> element that 
refers to a message with an XML Schema element describing the content. This utility is 
provided in this package as a console application with full source called 
“GenerateFaultWrappersFromWsdl.” The exception classes that are created all inherit from 
SoapException, so it is easy and straightforward to use them on the service side, simply 
“throw” the strongly typed exception and you are done. A little bit more work is required 
on the client side to translate the SoapException to a strongly typed exception, for this 
purpose the GenerateFaultWrappersFromWsdl utility also generates a class to map a 
SoapException to a strongly typed exception.  

 

2. In order to make the translation of the exception on the client side to happen seamlessly 
to the caller of the web service proxy, the proxy class that gets generated by the 
Wsdl/WseWsdl3 utilities needs to be extended. With .NET2 this can be done in a non-
invasive way since the proxy web service class is generated with the “partial” attribute. 
Please see the MathServiceExtension.cs source file in “Contract.Client”.  

NOTE: One alternative to this could also be to implement a custom Policy Assertion in WSE3 and 
throw the strongly typed exception from there. Unfortunately, WSE3 will wrap all non-
SoapException exceptions thrown from a policy assertion, which would not let the caller use the 
plain try {} catch {} pattern.  
 
This will allow service implementers use the following style of code :  

throw new MyStronglyTypedException(…); 
And client implementers use the following style of code :  
try 
{ 
    Mywebserviceproxy.SomeCall(…); 
} 
catch(MyStronglyTypedException myException) 
{ 
    // The content of the exception is in the myException.TypedDetail 
property 
} 

Appendix 4 - Math(A+B) sample project 

A sample application is provided that implements a simple A+B application. This application should 
be used as a minimum primer to become familiar with Framework 2.0. 

This example is contained in the file HTNG_Framework_2.0_Math_A+B_Sample.zip in the 
HTNG_Framework_2.0_Samples.zip archive which can be downloaded from the same location as 
this specification. 



Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

18 
 

This example contains 

• Custom UserTokenManager that demonstrates and discusses how to implement proprietary 
authentication.  

• Custom Policy implemented in code to require SOAP action header and UsernameToken  
• Web service implementation of add, subtract, multiply, divide. 
• Console application client that demonstrates how to call the service with a username 

token, etc. 

Appendix 5 - Payment Posting Example 

A sample application is provided that implements the payment posting message. This message has 
been most recently used by the Single Guest Itinerary workgroup. 

The sample is contained in the file HTNG_Framework_2.0_Payment_Posting_Sample.zip in the 
HTNG_Framework_2.0_Samples.zip archive which can be downloaded from the same location as 
this specification. 

The example implements a Web Service at 
http://htng.org/PWSWG/2006/04/SingleGuestItinerary#PostPayment and was developed using a 
small part of Activity.wsdl designed by Guest Itinerary Workgroup. The WSDL that was used can 
be found in the Schema subfolder. Please note, no custom Fault conditions were defined in the 
WSDL.  

The following pre-requisites are required on the system in order to build and run the sample:  

• MS IIS 
• MS .NET Framework v2.0 
• MS Visual Studio 2005 
• MS Web Service Enhancements v3.0 

Appendix 6 - Additional Examples 

Additional examples have been provided by the Workgroup to assist in people's understanding of 
Framework 2.0. 

1. HTNG 2.0 OTA Ping Service 
 
This example is contained in the file HTNG_Framework_2.0_OTA_Ping_Sample.zip in the 
HTNG_Framework_2.0_Samples.zip archive which can be downloaded from the same 
location as this specification. 
 
The zip archive contains: 
 
• a WSDL which describes the service and should allow the generation of the client code 
• an example for the request and response including the HTTP header To use the service, 
use: 
 
username = trust 
password = xyz 
 
The service is programmed in Java and uses AXIS 1.4. 
 
For addressing, http://schemas.xmlsoap.org/ws/2008/08 was used.  

2. WS-Security example 
 
This example is contained in the file HTNG_Framework_2.0_WS_Security_Sample.xml in 
the HTNG_Framework_2.0_Samples.zip archive which can be downloaded from the same 
location as this specification. 

http://htng.org/PWSWG/2006/04/SingleGuestItinerary#PostPayment�
http://schemas.xmlsoap.org/ws/2008/08�


Hotel Technology Next Generation Property Web Services – Framework 1.0 Specification 

19 
 

 
This is a sample Synchronous message that uses the UsernameToken element as per WS-
Security 1.0. WS-Addressing headers are also included. Please note that the message is 
only using WS-Securityfor authentication, therefore no in-message signature or encryption 
is performed. The password is provided in clear text, and implies that the communication 
is secured at the transport level.  


	Table of Contents
	PREFACE
	Framework 2.0
	Overview
	WS Addressing
	HTTP Communication Patterns
	The Synchronous Communication Process
	SYNC1
	Sync - Sample message with HTTP header

	SYNC2
	Sync - Sample message with HTTP response header
	Sync - Sample fault with HTTP response header


	Overall Fault Handling
	WSDL Construction and Change Management
	Security (if in use)
	Security XML Example

	Routing

	Appendix 1 - The Asynchronous Communication Process
	ASYNC1
	ASYNC2
	ASYNC3
	ASYNC4
	Asynchronous Fault handling
	Asynchronous WSDL Structure
	Asynchronous WSDL Example

	Simple HTNG Framework 2.0 Asynchronous Sample

	Appendix 2 - SOAP Fault handling
	Declarative Approach

	Appendix 3 - SOAP Exception Handling
	Appendix 4 - Math(A+B) sample project
	Appendix 5 - Payment Posting Example
	Appendix 6 - Additional Examples

